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NOMENCLATURE 

specific heat ; 
acceleration due to gravity; 
coolant heat-transfer coefficient; 
thermal conductivity ; 
length of tube; 
coolant flow rate; 
Prandtl number; 
heat-transfer rate; 
maximum value of Q, equation (15); 
counter-flow heat-transfer rate; 
parallel-flow heat-transfer rate; 
thermal resistance, equation (2); 
coolant Reynolds number ; 
inner radius of tube; 
outer radius of tube; 
coolant bulk temperature; 
exit bulk temperature; 
inlet bulk temperature; 
temperature of saturated vapor; 
dimensionless axial coordinate, equation (11); 
valueofXatx=L; 
axial coordinate, Fig. 1. 

Greek symbols 

! 
thermal resistance parameter, equation (12); 

0: 
thickness of condensate layer ; 
dimensionless temperature, equation (11) ; 

9 09 value of f3 at coolant exit; 
1, latent heat of condensation; 
PC, viscosity ; 
P* density. 

Subscripts 

1, coolant; 
2, condensate layer ; 
W, wall. 

INTRODUCTION 

IN c~~ENT~~N~L analyses of parallel-flow or counter-flow 
heat exchangers, the heat-transfer coefficients of the parti- 
cipating fluid flows are assumed to be constant along the 
length of the exchanger. The only exception to this practice is 
the Colburn analysis (see for example, Cl] pp. 453-457) in 

*Work performed when the author was an adjunct as- FIG. 1. Illustration of the physical problem. Left-hand 
sociate professor at the University of Minnesota. diagram : parallel-flow. Right-hand diagram : counter-flow. 

which the overall heat-transfer coefficient is assumed to vary 
linearly with temperature. There are instances, however, in 
which the nature of the heat-transfer process in one or both of 
the flows dictates a streamwise variation of the transfer 
coefficient. For instance, the thickening of a flowing liquid 
film owing to condensation will decrease the transfer coef- 
ficient. In this Communication, parallel-flow and counter- 
flow heat exchange involving a process-dictated transfer 
coefficient variation will be analyzed. Particular emphasis 
will be placed on the comparison between parallel-flow and 
counter-flow. 

The physical problem to be studied here is the conden- 
sation of a pure saturated vapor on the external surface of a 
vertical tube which is internally water cooled. A schematic 
view of the problem is presented in Fig. 1. The left-hand 
diagram depicts the situation in which the downward direc- 
tion of the coolant flow parallels the flow direction of the 
gravity-driven condensate film. In the right-hand diagram, 
the coolant flow is upward, which is in counter-flow to the 
condensate film. 
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In either case, the coolant temperature varies along the 
flow passage and, consequently, so do the wall temperature 
and the temperature difference across the condensate film. 
Since the growth of the condensate film depends on the 
aforementioned temperature difference, the heat-transfer 
coefficient for the film and its axial variation are determined 
by the dynamics of the heat-transfer process and cannot be 
specified u priori. It is this special feature which distinguishes 
the present problem from parallel-flow or counter-flow 
situations for which an a priori given transfer coefficient can 
be employed. With regard to the condensation problem 
treated here. it differs in a fundamental way from the classical 
Nusselt problem in that the temperature of the wall which 
bounds the condensate film cannot be specified in advance. 

AllALYSlS 

The various ingredients needed for the analysis will now be 
assembled. At any axial position x, the rate of heat transfer 
(for axial length dx) passing inward from the condensate to 
the coolant is 

h2nri ,, z D 

_;__. + ~zrrk, + krrr 

where the three terms dividing the temperature difference are 
the respective thermal resistances for internal convection, 
wall conduction, and external condensation. In this equation, 
T= T(x) is the local bulk temperature of the coolant, and h is 
the turbulent forced convection heat-transfer coefficient for 
pipe flow. The latter can be assumed independent of x because 
of the very short thermal entrance lengths for turbulent liquid 
flows and also because the transfer coefficients for turbulent 
pipe flows are generally insensitive to the thermal boundary 
condition at the wall. Curvature effects have been ignored in 
the last term of the equation because of the extreme thinness 
of the film. 

It is convenient to lump the x-independent portion of the 
thermal resistance and to define 

R = r,/r,h + r. In(r,/ri)/k,, (2) 

so that 

(2rrr, dx/R)( 7;,, - T) 
dQ = _~ .~__~ .~ 

1 + (G/Rk,) 
(3) 

By use of the Nusseh theory of condensation (e.g. [2] pp. 
533-536) the heat-transfer rate across the film (which is also 
equal to dQ) can be related to the film thickness 6 via 

dQ = (p~>.g!g2)2rtr,cS2d6. (4) 

Also, by application of energy conservation to the coolant, 
another expression for dQ follows as 

dQ = + riz,c,,dT, (5) 

where the plus sign applies for parallel-flow and the minus 
sign is for counter-flow. 

Equations (3)-(5) provide the vehicle for determining the 
variations of Tand 6 along the length of the tube as well as for 
finding Q. By bringing together (4) and (5) and integrating, 
there is obtained 

b3 = _t R3T+ constant, (6) 

where R3 is a convenient abbreviation (to be discarded 
shortly) for the constant factors in equations (4) and (5). To 
determine the integration constant in equation (6), infor- 
mation about 6 and T has to be supplied at some axial station. 
For parallel-flow, it is known that S = 0 and T= ‘&, at x = 0 
(see left-hand diagram of Fig. l), so that equation (6) becomes 

6 = 0(T- T)“3. 0 (7) 

The counter-flow case is less convenient to deal with, since 6 is 
known at x = 0 while T is known at x = L (right-hand 

diagram of Fig. 1). To circumvent this difficulty cosmetically. 
tentative use will be made of the unknown coolant exit 
temperature T,, and equation (6) will be evaluated using 6 :~ 0 
andr=T,atx=O.sothat 

6 = R(T, -- 71; i (XI 

Then, the dQ terms are eliminated from equations (3) and 
(5), 6 is introduced from either (7) or (R), and a dimensionless 
temperature 0 and dimensionless coordinate X are emploved. 
From these operations, there results 

(parallel-flow), 

dH 1-N 

ii = - 
_ _.~~ 

I + p(e, - OF3 
(counter-Row). 

where 

and, when the tube wall resistance can be neglected. 

The dimensionless bulk temperature distributions for 
either parallel-flow or counter-flow are governed by hrst- 
order ordinary differential equations, (9) and (10) respec- 
tively, which contain a single (albeit complex) parameter /< 
The quantity Be, the dimensionless exit temperature, is a 
computational input for the counter-flow case but not a true 
parameter. 

Equations (9) and (10) have to be solved numerically, but 
the solution methodology is quite different in the two cases. 
For parallel-flow, starting with 0 = 0 at X = 0, equation (9) 
can be forward integrated (via the Runge-Kutta scheme) 
through a succession of X values. The integration can be 
continued at will, and any X along the way can serve as the 
exit cross section of the tube, and the 0 value at each X can be 
regarded as the exit temperature. 

For the counter-flow case, the computational scheme calls 
for the exit temperature 8, to be selected and supplied to 
equation (10). The computations are then initiated at X = 0 
and are continued through increasing X values until a station 
is encountered where 0 = 0. This station can be regarded as 
the tube inlet, and the corresponding X value is the dimen- 
sionless tube length X,. Thus, unlike the parallel-flow case 
where a single computer run yields results for a host of tube 
lengths, a separate computer run must be made for each tube 
length in the counter-flow case. 

WESLILTS Al\iD DISCL’SSlOh 

The quantity of most direct utility is the heat-transfer rate 
Q, which can be expressed as 

Q = ni,c,,(T, - 7,). / 14) 

The maximum possible rate of heat transfer Qm_ is attained 
when T, = T,,,, so that 

Thus, the QIQmax ratio, which is sometimes called the heat 
exchanger effectiveness, can be represented as the tempera- 
ture ratio (T, - T,)/(T,,, - T,). 

The heat-transfer results for the parallel-flow case are 
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FIG. 2. Heat transfer results for parallel-flow. 

presented in Fig. 2, where Q/Q,., is plotted as a function of 
the dimensionless tube length X,. The curves are para- 
meterized by the /I parameter ranging between 0.1 and 100, 
with those curves for small and intermediate b displayed in 
the left-hand graph and the remainder displayed in the right- 
hand graph. 

Figure 2 confirms the expected trend whereby the rate of 
heat transfer increases as the length of the tube increases. The 
extent of the increase in Q is most marked for relatively short 
tubes. For longer tubes, the increase of Q with length is more 
gradual. This behavior may be related to two causes. First, the 
temperature difference T,,, - T is largest near X = 0 and 
decreases with increasing X. Second, since the condensate 
layer thickness 6 is smallest at X = 0 and increases with X, 
the overall thermal resistance for radial heat flow also 
increases. These two factors work together to produce locally 
high rates of heat transfer at small X and lower rates at larger 
X. The variation of the thermal resistance is a special feature 
of the present analysis that is not found in conventional 
parallel-flow or counter-flow analyses. 

Attention will now be focused on the role of the /? 
parameter. From an examination ofequations (3) and (9), it is 
evident that ,%I 1’3 is the ratio of the thermal resistance of the 
condensate film to the resistance R [equation (2)] of the tube 
wall and the coolant. The overall resistance is (1 + @r’“). 

Thus, for small /?, the overall resistance is small and the 
consequent high rates of local heat transfer cause a rapid rise 
of the coolant temperature. On the other hand, high j signals 
a high thermal resistance, with lower local heat transfer rates 
and a more gradual rise in coolant temperature. These 
characteristics are reflected in Fig. 2 and also explain why the 
left-hand graph (smaller p) is accorded a much smaller range 
of XL than is the right-hand graph. 

Next, turning to the counter-flow case, a presentation of 
heat transfer results can readily be made in a form similar to 
Fig. 2 for parallel-flow. However, this information can be 
conveyed in a more meaningful way via a comparison of the 
parallel-flow and counter-flow results. To this end, the ratio 
QcF/QPF is plotted in Fig. 3 as a function of the dimensionless 
tube length, with B as the curve parameter. The comparisons 
shown in the figure are for common tube lengths and 
common coolant flow rates for the two cases. 

All of the curves display a common pattern. At very short 
tube lengths QCF/QPF = 1, then, as the tube length increases, 
the curves rise, attain a maximum, and then diminish toward 
QcF/QPF = 1. Of particular interest is the height of the 
maximum since it indicates the maximum advantage of 
counter-flow compared with parallel-flow for a given B. The 
figure shows that the maximum value of QCF/QPF increases 
with 8. For intermediate j? (/? = l-lo), QCF/QPF ranges from 
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FIG. 3. Comparison of heat transfer results for parallel-flow and counter-flow. 
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Fro. 4. Representative coolant temperature distributions, 
B = 5. 

about 1.035 to 1.075. Thus, in broad terms, the counter-flow 
arrangement yields about a ST/, heat transfer advantage 
relative to parallel-flow. Such an advantage can be regarded 
as modest. 

That counter-flow is advantageous is by no means surpris- 
ing, but the existence of a maximum in the QCF/QPF curves is 
interesting. The maximum can be made plausible by explain- 
ing why QCF/QPF = 1 at both small and large values of XL. As 
X, -+ 0, the coolant is isothermal during its passage through 

the tube, and the flow direction is, therefore, immaterial. For 
large X,, the coolant becomes thermally saturated. ‘i.e. 
T= T%,,, so that once again the flow direction is of no 
consequence. At operating conditions other than these limits, 
QcF must exceed QPh thereby giving rise to a maximum in the 
curve of QCr/QpF vs Xb With increasing p, thermal saturation 
occurs at larger X,, so that the curves shift to the right and 
upward. 

To complete the pr~entation, attention IS briefly focused 
on thecoolant temperaturedistribution. For the parallel-Sow 
case, Fig. 2 already conveys this information provided that 
the ordinate variable is regarded as (T - T,)/(T,,, - T,,) and 
the abscissa is regarded as X (< X,.). Figure 4 shows 
representative temperature distributions for counter-flow 
(solid lines), where the curve parameter is X,, and the resutts 
are for p = 5. The temperature increases in the flow direction 
as expected (right to left on the abscissa), and thermal 
saturation is in evidence for the case of X, = 25. For 
comparison purposes, the figure also contains a few curves 
(dashed lines) for parallel-flow, plotted with respect to an 
oppositely increasing abscissa to facilitate the comparison. 
The figure shows that relative to the respective flow direc- 
tions, the coolant temperature initially rises faster for parallei- 
flow, but counter-flow catches up and t?nally forges ahead 
because of its more efficient transfer properties in the 
downstream portion of the tube. 
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NOMENCLATURE 

a’, u’, ditfusivites; 
c, c,, c, chaleurs massiques, capacitt thermique ; 
e, L, 8, x, longueurs, variables d’espace ; 
r, J, P, temps, constante de temps, variable de 

Laplace ; 
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K coefficient de transfert ; 
J@k quantite de chaleur : 
@,,%%%, flux calorifiques ; 
D#, A@, combinaisons de flux caloritiques; 
T,, Te, T,, T;, T,, T;, temperatures; 
AT, r. T, combinaisons de temperatures ; 

2::: 
masses volumiques ; 
conductivit~s thermiques ; 

AA’, BB’, plans de section droite; 
E,E,,&+ tensions Clectriques ; 
s, d, expressions de la reponse. 


